วันพุธที่ 12 กรกฎาคม พ.ศ. 2560

ฟังก์ชันเอกซ์โพเนนเชียล

ฟังก์ชันเอกซ์โพเนนเชียลฟังก์ชันนั้นมีอยู่หลายรูปแบบ แต่ละแบบก็มีการตั้งชื่อไม่เหมือนกัน
 ฟังก์ชันเอกซ์โพเนนเชียลก็เป็นอีกรูปแบบหนึ่ง
ของฟังก์ชันซึ่งเราจะไปดูว่าฟังก์ชันเอกซ์โพนเนนเชียลนั้นมีรูปแบบอย่างไร
ก็ต้องไปดูนิยามของมันครับ ว่านิยามของฟังก์ชันเอกซ์โพเนนเชียลนั้นเป็นอย่างไร เพิ่มเติม
ผลการค้นหารูปภาพสำหรับ ฟังก์ชันเอกซ์โพเนนเชียล

กราฟของฟังก์ชันกำลังสอง

กราฟของฟังก์ชันกำลังสอง
           ฟังก์ชันกำลังสอง  คือ  ฟังก์ชัน  เมื่อ  a,b,c  เป็นจำนวนจริงใดๆ 
ลักษณะของกราฟของฟังก์ชันนี้ขึ้นอยู่กับค่าของ  a , b  และ  c  และเมื่อค่าของ  a  เป็นบวกหรือลบ
จะทำให้ได้กราฟเป็นเส้นโค้งหงายหรือคว่ำ เพิ่มเติม


ฟังก์ชันเชิงเส้น

ฟังก์ชันเชิงเส้น ในคณิตศาสตร์ขั้นสูง ฟังก์ชันเชิงเส้น หมายถึง ฟังก์ชันที่เป็น ฟังก์ชันเชิงเส้น มักหมายถึง คณิตศาสตร์ ที่เป็น การสายเส้นตรง ระหว่างสองกลุ่มเวกเตอร์
ตัวอย่าง ถ้า {\displaystyle x} และ {\displaystyle f(x)} คือ เวกเตอร์ตัวประสาน ฟังก์ชันเชิงเส้นจะเป็นบรรดาฟังก์ชัน ที่แสดงได้ในรูปร่าง
{\displaystyle f(x)=\mathrm {M} x}, โดยที่ M คือ เมตริก
ฟังก์ชัน {\displaystyle f(x)=mx+b} จะเป็น การสายเส้นตรง ก็ต่อเมื่อ {\displaystyle b=0} เพิ่มเติม
ผลการค้นหารูปภาพสำหรับ ฟังก์ชันเชิงเส้น

ความสัมพันธ์และฟังก์ชัน

ความสัมพันธ์และฟังก์ชัน1.คู่อนั ดับ ในวิชาคณิตศาสตร์การจับคู่ระหว่างสิ่งสองสิ่งที่มีความสัมพันธ์กันจะใช้คู่อันดับ เป็ นสัญลักษณ์แทนสิ่งสองสิ่งที่มีความสัมพนัธ์กนั เช่น (2,4) หมายถึง 2 มีความสัมพนัธ์กบั 4 ในกรณีทวั่ ไป เราจะเขียนคู่อนัดบั ในรูป (a,b) เรียก a วา่ สมาชิกตวัแรกของคู่อนัดบั หรือ สมาชิกตัวหน้า และเรียก b วา่ สมาชิกตวัที่สองของคู่อนัดบั หรือสมาชิกตัวหลัง นอกจากน้ียงัไดว้า่ (a,b)  (c,d) ก็ต่อเมื่อ a  c และ b  d เพิ่มเติม
ผลการค้นหารูปภาพสำหรับ ความสัมพันธ์และฟังก์ชัน

การนําสมบัติของจํานวนจริงไปใช้ในการแก้สมการกําลังสอง

การนําสมบัติของจํานวนจริงไปใช้ในการแก้สมการกําลังสองสมการพหุนามกำลัง n ซึ่งอยู่ในรูป anxn + an-1xn-1 + an-2xn-2 + … + a1x + a0 = 0 เมื่อ n > 2 และ an, an-1, an-2 ,..., a1, a0 เป็นจำนวนจริง โดยที่ an ≠ 0 จะสามารถหาคำตอบของสมการพหุนามกำลัง n นี้ได้โดยใช้ทฤษฎีบทเศษเหลือช่วยในการแยกตัวประกอบ
เมื่อ f(x) = anxn + an-1xn-1 + an-2xn-2 + … + a1x + a0
โดย n > 2 และ an, an-1, an-2 ,..., a1, a0 เป็นจำนวนจริง และ an ≠ 0 เพิ่มเติม
ผลการค้นหารูปภาพสำหรับ การนําสมบัติของจํานวนจริงไปใช้ในการแก้สมการกําลังสอง

สมบัติของจำนวนจริงเกี่ยวกับการบวกและการคูณ

จำนวนจริงจริงเกี่ยวกับการบวกและการคูณ
จำนวนตรรกยะ (rational number) เป็นจำนวนจริงที่สามารถเขียนได้ในรูปเศษส่วนของจำนวนเต็มที่ตัวส่วนไม่เป็นศูนย์ และเขียนในรูปทศนิยมซ้ำได้
จำนวนอตรรกยะ (irrational number) เป็นจำนวนจริงที่ไม่ใช่จำนวนตรรกยะซึ่งไม่สามารถเขียนในรูปทศนิยมซ้ำหรือเศษส่วนของจำนวนเต็มที่ตัวส่วนไม่เป็นศูนย์แต่เขียนได้ในรูปทศนิยมไม่ซ้ำ และ
สามารถกำหนดค่าโดยประมาณได้ เพิ่มเติม
 ผลการค้นหารูปภาพสำหรับ สมบัติของจํานวนจริงเกี่ยวกับการบวกและการคูณ

จำนวนจริง

จำนวนจริง1. จำนวนอตรรกยะ หมายถึง จำนวนที่ไม่สามารถเขียนให้อยู่ในรูปเศษส่วนของจำนวนเต็ม หรือทศนิยมซ้ำได้ ตัวอย่างเช่น √2 , √3, √5, -√2, - √3, -√5 หรือ ¶ ซึ่งมีค่า 3.14159265...
             2. จำนวนตรรกยะ หมายถึง จำนวนที่สามารถเขียนให้อยู่ในรูปเศษส่วนของจำนวนเต็มหรือทศนิยมซ้ำได้ ตัวอย่างเช่น  เขียนแทนด้วย 0.5000...  เขียนแทนด้วย 0.2000...      
• ระบบจำนวนตรรกยะ     จำนวนตรรกยะยังสามารถแบ่งเป็น 2 ประเภท คือ เพิ่มเติ